$$\frac{\partial \rho^*(r^*;t^*)}{\partial t^*} = k_a^*(r^*)c_0^*(r^*)\phi(r^*;t^*) - k_d^*(r^*)\rho^*(r^*;t^*) \quad (A2)$$

where

$$k_a^*(r^*) = \frac{k_a(r)}{k_a(R)}, \quad k_d^*(r)^* = \frac{Rk_d(r)}{k_a(R)}$$

It is easy to show that the dimensionless distributions must satisfy the following relations:

$$\int_{0}^{\infty} c_{0}^{*}(r^{*})dr^{*} = 1 \tag{A3}$$

 $\int_{0}^{\infty} r^{*} c_{0}^{*} (r^{*}) dr^{*} = 1$ (A4)

For example, if the polydispersity of a latex sphere solution can be described by:

$$c_0(r) = are^{-\lambda r} \tag{A5}$$

for which $C_0 = a/\lambda^2$, $R = 2/\lambda$, then one need only consider the dimensionless distribution:

$$c_0^*(r^*) = 4r^*e^{-2r^*}$$
 (A6)

and

Manuscript received Oct. 13, 1992, and revision received Feb. 11, 1993.

Erratum

In the article titled "Robust Design of Binary Countercurrent Adsorption Separation Processes" (March 1993, p. 471), an incorrect Figure 8 (p. 480) was placed inadvertently. Here is the correct figure:

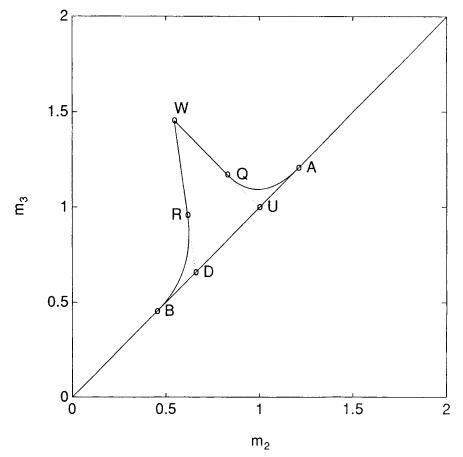


Figure 8. Region of complete separation in the m_2-m_3 plane, in the case where $\Omega_F < K_D$. $K_A = 2.67$, $K_B = 1$, $K_D = 2.21$, $y_A^F = 0.5$, $y_B^F = 0.5$, $\Omega_F = 1.46$.